
TIME-TO-MARKET
DRIVEN DISRUPTION
Starter Guide to Microservices
and Business Agility

CONTENTS
Executive Summary

What is Microservices?

Benefits of Microservices Architecture
Time-to-Market

Scalability

Guaranteed Up-time

No Vendor Lock

Resilience & High Availability

Dynamic Talent Pool

Microservices Use Cases
Legacy Transformation

Agile Integration

Build Cloud-Native Apps

Digital Channels & Portals

Multiple Teams

Technologies
Docker – Container Platform

Kubernetes – Container Orchestration

Micro-Frontends

API Gateway

Service Registry

Monitoring

Events Streaming and Sourcing

Case Study
Solution and approach

03

05

09

16

22

33

33

EXECUTIVE
SUMMARY

Digital transformation has for some time been a

top priority for Fortune 500 organizations although

very few are on the course to actively achieve this.

In reality, it is people and technology who, together,

contribute to the success of digital transformation.

Initially it begins with changing people’s mindset to

become customer centric, dynamic, accepting and

responding quickly to change. This is followed by the

technology.

The challenge associated with technology is not in

the adoption of new systems and platforms, rather

more, it lies mostly in the IT infrastructure. Some

organizations face challenges with their infrastructure

which hinders their efforts towards achieving digital

transformation. Lagging behind the competition when

it comes to releasing new features is one obstacle that

an organization may face. Consequently, organizations

have started to embrace new ways of transforming

their infrastructure and platforms to fit with their

dynamic needs and to increase their business agility.

4

EXECUTIVE SUMMARY

The software industry itself is being disrupted by new trends and methods with regard to how organizations

adopt new digital platforms and build software. The software industry has been disrupted by new tech

giants such as Netflix, Amazon, LinkedIn etc. and those companies have changed how the world adopts and

builds software. Those new trends can be summarized as follows:

Software is being built not bought: most of those companies and digital transformation

leaders are building their platforms rather than buying off the shelf software.

Software is being updated on a daily and weekly basis: Those companies release new

features multiple times a day across multiple datacenters rather than running long

release cycles on a quarterly or annual basis.

Software engineering paradigms have changed from monolithic and MVC design

patterns to microservices which have made the new platforms far more scalable and

extensible.

Software processes and methods have changed from waterfall and running long

release cycles to Agile and DevOps with a high reliance on test automation, continuous

integration and automated deployments.

Migration from traditional infrastructure and data centers to cloud platforms and

container orchestration platforms whether external or in house.

1

2

3

4

5

4

These new emerging habits are becoming widely adopted and transforming the way in which

IT executives think about how to undertake their digital transformation.

This e-Book explores microservices architecture and its benefits in accelerating the digital

transformation of organizations. The following section also discusses key use cases including

legacy systems transformation, agile integration, building cloud-native apps amongst others.

We will then list some of the key technologies and share a case study featuring one of our

customers.

5

WHAT IS
MICROSERVICES
ARCHITECTURE?

6

WHAT IS MICROSERVICES
ARCHITECTURE?

Microservices architecture is a software

development approach where the software

application is modular and created through

independent components. Each of those

components is built, tested, deployed and operates

totally independently of the other components.

These modules perform a given task and work

autonomously, providing continuous delivery even

if another module is offline. They are designed to

handle one task, communicating with the other

modules through standard APIs and events.

 In short, the microservice architectural style is an approach to developing a single application

as a suite of small services, each running in its own process and communicating with lightweight

mechanisms, often an HTTP resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery. There is a bare minimum of

centralized management of these services, which may be written in different programming languages

and use different data storage technologies.

-- James Lewis and Martin Fowler (2014)

7

In a monolithic architecture, one big box functions

as one application. This box consists of the User

Interface (UI) component as well as a business logic

and data access layer. Conversely, microservices

allow the building of small shippable functions

where each function consists of its own UI, logic

and data components.

This is why microservices architecture speeds up

the process of software development and has a

great impact on business agility. All these benefits

will be explored in the next section.

µservice 1 µservice 2 µservice 3 µservice 4

µservice 5 µservice 6 µservice 7 µservice 8

µservice n-3 µservice n-2 µservice n-1 µservice n

User
Interface (UI) Business Logic

Data Access
Layer

User Interface(UI)

Monolithic Architecture Microservices Architecture

8

µservice 1

Container Orchestra on Pla orm

User Interface (UI)User Interface (UI)

Data Object Access Layer

File System

Bu
si

ne
ss

Lo

gi
c

Microservices Domain

One Module down,
The whole applica on is down

One Big Block,
Ac ng as One Applica on

Granular Components, Guaranteed Up-
me, Resilient Pla orm

Module I

Module F Module K

Module L

Module G

M
odule H

Module J

µservice 2 µservice 3 µservice 4 µservice 5

µservice 6 µservice 7 µservice 8 µservice 9 µservice 10

µservice 11 µservice 12 µservice 13 µservice 14 µservice 15

Monolithic Architecture Microservices Architecture

As end users, we sometimes encounter errors when

using software applications. Those issues could

involve the entire application crashing or a major

issue as a result of one feature failing. In the case

of an application crashing, there will be a period

of down-time while the development, testing and

operations teams fix, test and deploy the new

release. This has a significant impact on end users

and customer experience.

On the other hand, if only one feature fails, this has

far less impact on the end users of the application.

Furthermore, the time taken to release a fix for just

one feature is far less than redeploying the whole

application. In other words, a major issue may require

a change in two lines of code but, the question is, is it

necessary to test and release this feature update or

test and redeploy the entire application?

To summarize, one feature that causes the whole

application to fail is an example of a monolithic

architecture. However, when only one feature fails,

this represents a microservices context.

9

BENEFITS OF
MICROSERVICES
ARCHITECTURE
• Time-to-Market
• Scalability
• Guaranteed up-time
• No Vendor Lock
• Resilience & High Availability
• Dynamic Talent Pool

10

How long does it take your team to ship new features or updates? Time-to-market has become an essential

key performance indicator (KPI) to measure the throughput of your IT and DevOps teams. With the changing

demands of business, organizations are competing over their responsiveness to customers’ needs.

A team’s throughput is measured by the amount of builds (new features) that can be released per month.

In other words, a high throughput implies you are increasing your organization’s speed in responding to

business needs. Hence, you are improving your time-to-market.

Time-to-Market

BENEFITS OF MICROSERVICES
ARCHITECTURE

Microservices architecture enables teams to apply DevOps practices to speed up their development process

since each feature is built, tested and deployed independently thus enabling teams to ship new features

quickly and independently of each other. Also, due to the nature of the architecture, multiple teams can

work together in parallel, thereby also increasing the frequency of releases per month.

What is DevOps?

DevOps is an engineering culture bringing

developers and IT operations together with

the objective of delivering a high quality of

software more quickly.

It’s also a set of continuous practices

automating testing, integration, delivery

and deployment.

11

If you are the owner of a coffee shop and people start queuing up because they love your coffee, would

you consider replacing your small coffee maker with a new one? Let’s assume that you bought a bigger

coffee machine that helped you to deliver the orders faster. Luckily, more and more people continue to

queue and, at some point, the biggest coffee maker available won’t be able to meet this need. You will need

to have more than one coffee maker to be able to cater for the occasional high customer traffic.

In this example, the original small coffee maker that you are trying to replace with a bigger one is the

monolithic application. On the other hand, the small coffee makers that you should be adding to augment

the existing one represent the flexibility of multiplying the application instances according to your

customers’ needs.

That’s why microservices offer easy scalability since the modules work independently. At the infrastructure

level, each microservice is scaled and managed on its own. You don’t need to scale the whole system in

situations of peak time and increasing load. In fact, only the microservices experiencing a high load are

scaled. This is also done automatically without human intervention via auto-scaling capabilities and self-

healing.

Scalability

Below is an example of a continuous delivery pipeline. Each card on the board represents a shippable

piece of software starting from the “Backlog” column and moving through the phases until it has been built

and deployed.

The time-to-market in a microservices environment can be improved by 10 times or even more. Basically,

you are transforming your culture to a “Release on Demand” approach, a customer centric culture that

allows your organization to deliver releases in hours or days rather than in months and years.

Backlog To Do In Progress Review Done

Con nuous Explora on Con nuous Integra on Con nuous Deployment Release on Demand

Con nuous Delivery Pipeline

12

With the right microservices architecture, it’s almost

impossible for the whole system to go down. Since each

microservice is built, deployed and managed independently

and is totally isolated at runtime, the whole system can

therefore never go down. Should a microservice crash,

this will only impact its own functionality, the rest of the

system will behave normally. Furthermore, microservices

platforms such as Kubernetes have high availability, load

balancing and autoscaling capabilities that scale each

microservice independently in the case of a high load

when certain thresholds are reached.

Guaranteed Up-time

For example, let’s assume we have containerized microservices A, B and C and we are using Kubernetes

as an orchestration platform. Kubernetes will be able to monitor microservices loads and automatically

scale these up or down accordingly. As illustrated below, microservice C has a higher load than A and B

which is why there are four instances for C and only two for the other microservices. During other times,

microservice B could experience higher demand and would have 10 instances. All these dynamic changes

in the number of instances are achieved with autoscaling using Kubernetes.

Auto scaling controls the number of instances of each microservice, depending on the need. That is, the

instances of a microservice are increased during periods of high load while they are reduced during

periods where a lower load is present. The question has always been when to scale up or down and the

answer lies in application monitoring and container management using Kubernetes.

What is Auto Scaling?

Microservices Scalability

µservice C

Instance 1

µservice A

µservice B

Instance 1 Instance 2

Instance 2

Instance 1 Instance 2 Instance 3 Instance 4

12

13

In a monolithic architecture, when one function crashes due to performance or memory

management issues, then the whole system is likely to go down whereas in a microservices

world there will only be an error in processing this one function while the rest of the system

will behave normally.

Not only that, developers will also be able to fix the issue, test and deploy the new release

in a matter of hours instead of weeks or months. That is the benefit of time-to-market or

fast deployment as discussed above.

14

Kubernetes has an “auto-scaling” feature which is basically when Kubernetes automatically monitors the

resources utilization of each microservice. It has the ability to increase the number of instances for a

specific microservice based on its load and resource utilization and to load balance the traffic across the

multiple instances of this microservice.

There is therefore no need to scale the whole platform to cater for peak times. This is done automatically

and only the microservices that need to be scaled up and down based on the load are scaled.

Resilience & High Availability

What happens when a microservice fails

unexpectedly? Not only does this not impact upon

the whole application runtime, the platform also

detects the failure and restarts the microservice.

This is what we call “self-monitoring” and “self-

healing”.

Kubernetes, OpenShift Container platforms or

orchestrators have the capability to automatically

detect failures and self-heal. These capabilities

measure the system’s health thereby ensuring

resilience and high availability.

An orchestration layer is fundamental to the self-

monitoring and healing of microservices.

Microservices architecture and its principles are based on open standards and are strongly backed up by

the open source community. Almost all commercial microservices platforms follow these open standards

which makes it easy to migrate from them whenever necessary

As previously mentioned, each microservice is built and deployed independently with a bound context. So,

by design, microservices have standard based APIs which makes it easy to extend and even use different

programing languages and technologies.

You can easily build new modules and functionality that use existing services since the whole platform is

open for extension. Also, those new modules can be deployed to the same microservices platform or even

other external platforms. This is why there is no need to worry about vendor lock-in.

No Vendor Lock

14

15

It doesn’t matter what language this service is written or designed in. For one coherent application, you

can have microservices developed in different languages such as Java, .Net, etc. In that respect, there

are no more boundaries when it comes to hiring new engineers to join your team. However, although

this is technically feasible, this capability shouldn’t be overused. You should unify your technology stack

and different programing languages based on your needs as you don’t want to end up with five or six

programing languages that would be difficult to maintain.

With microservices, it’s easier to onboard new team members as well as hire software engineers with

different coding backgrounds. Instead of a large complex monolithic system that needs a lot of knowledge

transfer and code handover before a developer can start participating in the platform, in a microservices

world it’s a lot easier since the developer is building and deploying simple microservices isolated from the

complexity of the rest of the platform.

A microservice is a black box to other services with a given standard API that is built once and reused across

the organization. Also, building microservices involves simple programing that all software engineers have

good knowledge of unlike other enterprise platforms that require specific training and certification.

Dynamic Talent Pool

16

MICROSERVICES
USE CASES
• Legacy Transformation
• Agile Integration
• Build Cloud-Native Apps
• Digital Channels & Portals
• Multiple Teams

17

MICROSERVICES
USE CASES

Are your legacy systems lingering behind your digital transformation strategy? Do you currently face

challenges in extending your legacy applications with new features?

Transforming your legacy applications over microservices architecture is one of the common use cases

among organizations. With changing business needs, legacy applications reach a complex point where

adding a new feature or update becomes challenging. It may take months to release this new change

instead of hours or days due to the complexity of the system.

Microservices facilitate your modernization journey whether by refactoring, migrating or extending your

legacy systems.

Legacy Transformation

18

Similar to the nature of microservices, each integration service will be auto-scaled based on the needs of

the workload. In addition to building integration services over microservices, an event-based architecture

is used ensuring run-time decoupling. Instead of services directly calling one another, a service will publish

an event in a queue which will be listened to and acted upon by a subscriber.

Have you been facing challenges with your current integration methodology? Do you have proper updated

and maintained documentation for your integration services? Does your architecture require a complete

system integration testing if you alter one of your applications?

Agile integration transforms the traditional ESB methodology to a decentralized approach thereby

enabling business agility and the rapid development of API and integration services. With microservices

architecture, each integration service is built, tested, deployed and managed independently.

Agile Integration

Cloud Native Container Orchestration Platform

Event Based Messaging

Se
rv

ic
e

Re
gi

st
ry

Common
Messaging

Validation
Services

Security (AA) Auditing
& Logging

M
ic

ro
se

rv
ic

es

Common Services Accounts Integration Services Credit Check Integration Services

Service A Service B Service A Service A

Service C Service D Service C Service D

Microservices Domain YMicroservices Domain X

D
ev

O
ps

 &
 C

on
tin

uo
us

 D
el

iv
er

y
En

vi
ro

nm
en

t

M
an

ag
em

en
t,

M
on

ito
rin

g
&

 G
ov

er
na

nc
e

Engagement Applications

Backend Systems

API Gateway

Agile Integration Platform

Ag
ile

 In
te

gr
at

io
n

Pl
at

fo
rm

19

Cloud-native applications, small, independent and loosely decoupled services, are built over microservices

architecture. The goal of cloud-native app development is to build and deliver fast new applications and

features. The key characteristic of cloud-native applications is their flexibility to be built once and their

ability to be run anywhere – private, public or hybrid clouds.

As mentioned previously, legacy transformation is essential for digital transformation to overcome the

challenges of old-style software systems. Nevertheless, building fast applications is crucial especially if

your organization is going to adopt cloud computing.

Build Cloud-Native Apps (Deliver FAST)

Organizations are digitizing their services to offer exceptional customer experience and therefore digital

channels and portals have become more and more important. In fact, building digital engagement platforms

and e-Services is far more efficient with microservices architecture. Not only does it boost your time-to-

market as discussed above but enables your team to be equipped with the necessary set-up for the fast

shipment and delivery of new features and updates. In addition, portals built over microservices are more

resilient, highly scalable and have the flexibility to integrate with external or third-party applications.

Digital Channels & Portals

19

20

Illustrated below is how and why microservices are the best method to build agile portals. This is a

screenshot from an Amazon online store. As you can see, the book page contains information about the

book’s details, an image preview, price, reviews, inventory as well as guidance for customers showing what

other books they may also be interested in.

Each piece of aforementioned information is built as one microservice. Let’s see how this impacts upon the

portal flexibility and business agility:

•	 Guaranteed up-time: If the reviews service goes

down, the entire page remains up and running

apart from the user possibly seeing a message in

the reviews box advising that book reviews are

not currently available.

•	 Scalability: If the microservices orchestration

platform detects a high-load on the inventory

service, the service will be automatically scaled

up depending on need.

•	 Flexibility of Integration: If the price service

needs to integrate with Kindle APIs to retrieve

information or the inventory service needs to

provide stock information from an external

warehouse system, each service is sufficiently

flexible to integrate through APIs instead of

integrating the whole portal.

20

21

Instead of having one team working on a build at any one time, microservices architecture allows multiple

teams to work in parallel. Traditionally, functional teams work mutually exclusively on a build and the

teams are formed in relation to UI, Integration/API, Database, Quality and Operations.

Instead of having one team working on

a build at any one time, microservices

architecture allows multiple teams to

work in parallel. Traditionally, functional

teams work mutually exclusively on

a build and the teams are formed in

relation to UI, Integration/API, Database,

Quality and Operations.

Multiple Teams

Team UI

Team
Integration

Team
Database

Team Quality

BookService Team

PriceService Team

ReviewsService Team

InventoryService Team

Team Operations

On the other hand, in a microservices architecture

environment, teams are cross-functional. That is, each team

is responsible for one service. As mentioned in the example

above, services such as the book details, price, reviews and

inventory are all independent microservices. Consequently,

cross-functional teams can work in parallel rolling-out new

features and updates. Hence throughput, i.e. the frequency of

releases, is increased.

As illustrated below, the structure of the teams has been

transformed to become cross-functional. The “BookService”

team is responsible for all the tasks related to the book’s

details in terms of UI, integration, data and operations. With

this set-up, the “BookService” team can build, test and release

in parallel with the “PriceService” team.

21

22

TECHNOLOGIES

23

TECHNOLOGIES

Since microservices are self-contained, independent application units, with each fulfilling only one specific

business function, they can be considered small applications in their own right. What would happen if you

created a dozen microservices for your app? And what if you decided to build several microservices with

different technology stacks? Your team would soon be in trouble as developers have to manage even more

environments than they would normally do with a traditional monolithic application. There’s a solution

though: using microservices and containers to encapsulate each microservice. Docker helps you to manage

those containers. Docker is simply a container platform that was initially designed to provide a simpler

way to handle containerized applications.

Virtual machines (VMs) were introduced to optimize the use of computing resources. You can run several

VMs on a single server and deploy each application instance on a separate virtual machine. With this

model, each VM provides a stable environment for a single application instance. Unfortunately, however,

when the application is scaled, issues with performance will soon be encountered since VMs still consume

a lot of resources.

Docker – Container Platform

24

Because microservices are similar to small apps, microservices must be deployed to their own VM

instances to ensure discrete environments. And, as you can imagine, dedicating an entire virtual machine

to deploying only a small part of an app isn’t the most efficient option. With Docker, however, it’s possible

to reduce performance overhead and deploy thousands of microservices on the same server since Docker

containers require a lot fewer computing resources than virtual machines.

Docker is an excellent tool for managing and deploying microservices. Each microservice can be further

broken down into processes running in separate Docker containers which can be specified with Dockerfiles

and Docker Compose configuration files. Combined with a provisioning tool such as Kubernetes, each

microservice can then be easily deployed, scaled and collaborated on by a developer team. Specifying an

environment in this way also makes it easy to link microservices together to form a larger application.

Kubernetes is an open-source orchestrator, grouping

systems together to form clusters. In these clusters, the

deployment and management of containers is automated

at scale while meeting fault-tolerance, on-demand

scalability, optimal resource usage, accessibility from the

outside world and seamless updates/rollbacks without any

downtime.

Google open-sourced the Kubernetes project in 2014.

Kubernetes therefore builds upon a decade and a half of

Google’s experience of running production workloads at

scale, combined with best-of-breed ideas and practices

from the community.

•	 Faster start time. A Docker container starts in a matter of seconds because a container is just an

operating system process. A virtual machine with a complete OS can take minutes to load.

•	 Faster deployment. There’s no need to set up a new environment; with Docker, web development

team members only need to download a Docker image to run it on a different server.

•	 Easier management and scaling of containers. You can destroy and run containers faster than you can

destroy and run virtual machines.

•	 Better usage of computing resources. You can run more containers than virtual machines on a single

server.

•	 Support for various operating systems: You can get Docker for Windows, Mac, Debian and other OSs.

Docker’s advantages

Kubernetes – Container Orchestration

25

•	 Horizontal Scaling: Kubernetes helps scaling up or down applications based on the load on each

application and predefined rules based on metrices. Scaling up and down means creating more

instances on demand and load balancing traffic between them.

•	 Self-healing: Kubernetes monitors containers, self-heals and ensures up-time. The system restarts

failed containers, replaces, reschedules or kills containers that don’t respond to user-defined health

check.

•	 DevOps: The platform provides the devOps tools to automate, scale and build resilient applications.

Kubernetes allows applications to be deployed anywhere independent of the underlying infrastructure.

•	 Containers Provisioning: Kubernetes places containers based on their needed resources. It automatically

calculates the best location for containers; ensuring better utilization for resources.

•	 Automated rollouts and rollbacks: If changes are rolled out and something goes wrong with an

application, Kubernetes will rollback the changes based on predefined rules and configuration.

Kubernetes Capabilities

A Kubernetes cluster is a set of machines, called nodes, that run containerized

applications managed by Kubernetes. A Kubernetes cluster has at least one

worker node and at least one master node. The worker node(s) host the pods

that are the smallest and simplest Kubernetes objects.

They are the unit of deployment in Kubernetes that represent a single instance

of the application. A pod is a logical collection of one or more containers. The

master node(s) manages the worker nodes and the pods in the cluster.

26

Micro-frontends is an architecture pattern around

decomposing frontend monoliths into smaller,

simpler chunks that can be developed, tested and

deployed independently while still appearing to

customers as a single cohesive platform. You can

think of this as breaking down a single page into

smaller widgets or building blocks where each block

is developed, tested and deployed independently.

All these “micro frontends” are geared up to be

displayed as one page.

Micro-frontends is the visualization of a website or

web app as a composition of features that are owned

by independent teams. Each team has a distinct area

of business or mission it cares about and specializes

in. To achieve this, we have two options: server-side

composition and client-side composition.

Micro-Frontends

An API gateway is a core component of any

microservices platform. Since almost all

microservices expose their services and interactions

through APIs, the API gateway acts as the single

entry point for any microservice. The API gateway

encapsulates all the detailed service information

and system design providing a single entry point

for this to the system. The API GW has other

responsibilities such as authentication, monitoring,

load balancing, caching, request shaping and

management and static response handling.

API Gateway

Requestor
API

Gateway

Service
Registry

µservice 1

µservice 2

µservice 3

The benefits of micro frontends are:

•	 Smaller and maintainable frontend services

•	 Faster delivery and updating of features

•	 More scalable organizations with decoupled autonomous teams

•	 Ability to update or even rewrite parts of the frontend in a more incremental agile manner

27

The service registry is a database that contains information about all the microservices on a specific

microservices platform. All microservices are registered in this database where the API gateway dispatches

requests based on the information registered.

The service registry has two main responsibilities:

	 1)	 Registration of services: whenever a new service is added or updated, the new information should

be registered in the service registry.

	 2)	 Discovery: this is the counterpart of registration, when a client wants to access a service, information

such as location, parameters, version and so forth comes from the service registry.

Service Registry

Client API Gateway Service Registry

µservice

1
2

3

4

Payment
Service

The API Gateway is responsible for request

routing. All requests from clients first go

through the API Gateway which then routes

requests to the appropriate microservice. The

API Gateway can handle a request by invoking

multiple microservices and aggregating the

results. It can translate between web protocols

and also undertake message transformation and

enrichment such as adding information to the

message header or body.

28

When considering microservices, one of the

biggest challenges you think of is monitoring.

Unlike the traditional large monolithic

systems, in microservices architecture

there are hundreds of small services where

each one needs to be monitored. If you

have the right microservices monitoring

design and tools in place you can detect

and troubleshoot issues more easily than

with a traditional system. You can build

much more resilient platforms.

In a microservices world, each microservice

is monitored independently. Each

microservice exports its metrices; those

metrices form the infrastructure such as

memory, processing, etc, and applications

such as the number of transactions, business

exceptions, etc., all of which are normally

aggregated in a monitoring platform where

you can visualize, send alerts and configure

automated actions.

Microservices Monitoring

Microservice 1

Business metrices

Application metrices

Infrastructure metrices

Microservice….N

Monitoring
platform

visualization &
Dashboards

Alerts &

Business metrices

Application metrices

Infrastructure metrices

Monitoring

29

Prometheus is an application used for event monitoring and alerting. Like Kubernetes, it is a Cloud Native

Computing Foundation Project and it ships with an extensive set of preconfigured Grafana reports and

dashboards that help to monitor Kubenetes in real-time and proactively alert administrators should any

issues be detected.

Monitoring Infrastructure

29

30

Collecting and Monitoring Application logs

In a microservices world, each microservice has its own logs. So, with multiple services and applications

on a Kubernetes cluster, a centralized, cluster-level logging stack can help you quickly sort through and

analyze the heavy volume of log data produced by your services. Elasticsearch, Fluentd and Kibana (EFK)

is the stack that aggregates logs from all services into Elasticsearch and provides Kibana UI with the

ability to view any logs.

Through this stack you can view your logs more easily, search for specific time periods and view specific

events and exceptions when they occurred. It gives you far better visibility and more control over your

application.

µservice C

µservice A

µservice B

µservice D

LOG

LOG

LOG

LOG

Fluentd Elas c Search Kibana

31

Event driven design is a very common

pattern when it comes to microservices

architecture. Since each microservice

is totally independent, we want it to

stay loosely coupled with its business

logic and data and we don’t want high

dependability between services and

point to point interactions, these aspects

became the focus of the event driven

design.

The idea behind this is that each service

publishes an event with the action

it performed to an event streaming

platform and then any other service

can consume this event to perform its

desired objective. Unlike direct REST

calls,

services that create requests do not

need to know the details of the services

that consume the requests. By having

this facility, you can add new services

that take actions based on the event

without the need for the providing

service to undergo any changes or even

have knowledge of the new service.

The benefits of using events streaming:

•	 Asynchronous communication between services

•	 Loose coupling

•	 Ease of scaling

•	 Events replay and recovery

Furthermore, the application
can reconstruct an entity’s
current state by replaying the
events. Applications preserve
events in an event store, a
database of events, which
has an API for adding and
retrieving an entity’s events.
The event store also behaves
like a message broker.

Events Streaming and Sourcing

32

Scale to hundreds of nodes 1
Ability to handle millions of

messages per second 2 Events storing and replay4

Real-time processing (~10ms) 3

Apache Kafka is a horizontally scalable, fault tolerant and fast messaging system. It’s a pub-sub model in

which various producers and consumers can write and read. It decouples source and target systems. Some

of the key features are:

Apache Kafka

Client

Event Store
Apache Kafka

Microservice AMicroservice B
Send async eventConsumer event

Read Information Submit Information

Database Database

ProducerConsumer

Apache Kafka

33

CASE STUDY

34

CASE STUDY

The Journey of Legacy Modernization to Microservices

Legacy
System

Legacy
System

Legacy
Syste

m

Application

Modernization

Application

Modernization

Platform (containers orchestration, PAAS, Cloud…)

Architecture (microservices, event based, Domain driven design…)

Culture & Processes (Agile, DevOps, CI/CD, test automation…)

Monolithic Architecture & platform

Legacy Application Architecture

Microservices Architecture

Application

Modernization

API gateway

Cloud Native platform

A leading mortgage financing institution, serving citizens on low and middle income, faced several challenges

with its existing legacy core system which was more than 20 years old. The system had continued to grow

over the years with the addition of new features incrementally serving the ongoing business demands

of the organization. The system grew exponentially until it eventually reached a stage where adding new

features and changing existing ones was very costly, risky and time-consuming.

Here is a summary of the challenges they faced:

The current system was too complicated to add new features to it. Implementing new features was time-

consuming in terms of development, testing and release time.

The current system was processing hundreds of thousands of transactions and the database contained

millions of records. It was difficult to scale the system during peak times and when faced with a sudden

high load.

The current legacy code was complex to implement new changes as well as testing being time-consuming

and risky.

Exposing APIs and integrating with external systems was challenging, complex and time-consuming.

Not responsive to business demand

Scalability

Change was risky

APIs & Integration

35

Solution and approach

After assessing the situation, we decided to

migrate the system to microservices architecture

running on containers in a private cloud container

orchestration environment.

Solution highlights:

•	 Phased Agile Approach: We started to

break down the legacy system into smaller

components, “microservices”, migrating these

components to containers and exposing them

as REST APIs. This was a low risk approach

where the two systems co-existed together

migrating components in sprints every two

to four weeks.

•	 Quick time to market: Implementing new

features and deploying these to production

improved by 4-5x faster. All new components

had automated DevOps pipelines with built

test automation thus achieving quality at

speed.

•	 Performance Boost: We moved those

components with scalability issues and

performance bottlenecks thereby offloading

the legacy system to the modern scalable

platform. Each microservice can now scale

independently based on its load at runtime

and there is no need to scale the whole

system.

•	 API first: Easily integrated with internal

systems such as digital channels and external

third party systems and banks.

36

ABOUT SUMERGE
We’re a technology company yet our role is beyond offering technology; we combine innovation with solid

technology expertise and deep business understanding to transform how you do business. As your partner,

we fully integrate your business needs and industry requirements with our team’s expertise, innovation

and passion to take your business through a unique digital transformation journey.

Significant change, positive impact and passion are our fuel. We have a unique culture reflecting the

way we think and act. A culture that encourages freedom and responsibility, high performance, customer

centricity and innovation.

2005
established since

250+
Successful
projects

5M+
System Users

13+
Countries Served

Authors:

• 	 Dina Hemimy, Technology Consultant & Business Development Manager (dhemimy@sumerge.com)

• 	 Khaled Sinbawy, Solution Architect (ksinbawy@sumerge.com)

• 	 Mohamed Nour, Chief Technology Officer (mnour@sumerge.com)

